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Problem Statement

“Integration of accent classification into speech recognition systems to accurately 
identify and adapt to the accents of speakers, improving recognition accuracy and 
usability, particularly for non-native speakers or those with strong regional accents.”

Current voice technologies are primarily based on western and developed datasets.

Improved and fine-tuned speech recognition models are needed to accommodate 
various accents and ensure inclusive usability.
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S.No Title Methods Features Extracted Accuracy Number of 
Accents

Dataset Size

1 Accent Recognition Using I-Vector, Gaussian Mean 
Supervector And Gaussian Posterior Probability Supervector 
For Spontaneous Telephone Speech

SVM, NBC and SRC Gaussian Mean Supervector (GMS), i-vector and 
Gaussian Posterior

Probability Supervector (GPPS)

56%
50%
58%

5 30,000

2 Identification of the English Accent Spoken in Different 
Countries by the k-Nearest Neighbor Method

KNN MFCC 87.3% 6 330

3 Indian Accent Detection using Dynamic Time Warping Dynamic Time Warping MFCC 63.4% 4 -

4 Speaker Accent Recognition Using MFCC Feature Extraction 
and Machine Learning Algorithms

Multi-layer Perceptron, KNN MFCC 89.1%, 88.2% 7 367*

5 Accent classification using Machine learning and Deep 
Learning Models

Polynomial SVM, Decision Tree MFCC 95.434%, 98.054% 5 2140

6 Accent Classification for Speech Recognition A combination of GMM and SVM MFCC, First and Second Derivatives of MFCC, Word 
N-grams, POS N-grams.

82% - 948

7 English Language Accent Classification and Conversion using 
Machine Learning

GANs MFCC, Fundamental Frequency, Aperiodicity 68% 13 -

8 A Machine Learning Approach to Recognize Speakers Region 
of the United Kingdom from Continuous Speech Based on 
Accent Classification

KNN, SVM, Random Forest (the accuracy is tested with 
unscaled, min-max scaled, and standard scaled 

features)

MFCC 98.4%
97.3%
93.2%

5 17,877

9 Comparison of Feature Extraction for Accent Dependent Thai 
Speech Recognition System

SVM Energy Spectral Density
(ESD), Power Spectral Density (PSD), Mel-Frequency 

Cepstral
Coefficients (MFCC) and Spectrogram (SPT)

89.3% (M) and 
93.8% (F)

For MFCC

3 600

10 Accent Classification SVM, GMM MFCC, PLP 51.47% 3 10,000

Literature Survey

*only number of speakers was divulged, number of samples may vary

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6639089
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6639089
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6639089
https://ijisae.org/index.php/IJISAE/article/view/1130/635
https://ijisae.org/index.php/IJISAE/article/view/1130/635
https://ieeexplore.ieee.org/document/8392233
https://dergipark.org.tr/en/pub/jeps/article/896427
https://dergipark.org.tr/en/pub/jeps/article/896427
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9786885
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9786885
https://link.springer.com/chapter/10.1007/11677482_25
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3600748
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3600748
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9393038
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9393038
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9393038
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465705
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8465705
https://cs229.stanford.edu/proj2010/WatanaprakornkulEksombatchaiChien-AccentClassification.pdf


Shortcomings found

- Most models implemented lacked diversity in their datasets.

- The datasets used were either region specific or were too general, taking a global 
dataset but taking into account only a handful of accents.

- Some of the papers also operated on very small data sets which caused skewed 
results.

- We are improving on the number of accents classified.

- We are also improving on accuracy.



Dataset - Common Voice

• Dataset by mozilla.org

• Audio clips submitted by users (donated)

• Text, self-reported and voted on by users

• Age, gender and accent - self reported



All Data



Labeled Data



Pre-Processing

Data Cleaning and Formatting

• Removing audio above 10s

• Padding audio

• Sampling rate of the audio was already set to 22050 Hz



Pre-Processing

Data Issues

• Imbalance dataset - data augmentation

• Time shift: Shifting the audio to the left or the right by a random amount

• Add noise: Add random values to the sound

• Frequency/Time mask: Removing random frequencies and time bands from the 
spectrogram.

Not suitable

• Pitch Shift: Randomly modifying the frequency of parts of the sound

• Time stretch: Randomly slow or speed up the sound



Data Augmentation

https://towardsdatascience.com/audio-deep-learning-made-simple-part-3-data-preparation-and-augmentation-
24c6e1f6b52



Features Extraction

• Framing and Windowing: Dividing audio into short time segments and applying a function for analysis.

• Fast Fourier Transform: Converting audio from the time domain to the frequency domain to identify frequency 
components.

• Mel Filtering: Applying filters based on human hearing sensitivity to capture important frequency components.

• Discrete Cosine Transform: Transforming filterbank energies into coefficients that represent audio features 
compactly.

• Obtained MFCCs: Mel-Frequency Cepstral Coefficients capture essential audio characteristics for tasks like speech 
recognition



Features Extracted

• Mel-Frequency Cepstral Coefficients

• Time Series MFCC

• Zero Crossing Rate

• Spectral centroid

• Root mean square energy



Visualization

• Mel scale on the Y axis

• Time on X axis

• Colours represent power in dB



Methodology

• MFCC, identified as the most prevalent and successful feature in human speech data 
analysis, is selected as the primary feature extraction method.

• KNN, and SVM, proven effective in accent classification across multiple studies, are 
chosen as the classification models.

• In our pre-literature study research we also discovered articles implementing neural 
networks



Methodology

• MFCCs are extracted and standardized and then passed onto to the models.

• Models

o KNN -  A simple algorithm that classifies new data points based on their similarity to the 

existing data points in the training set.

o SVM - Another simple but powerful algorithm which finds the hyperplane that separates 

the classes in the feature space.

o NN - Due to its architecture it is able to handle complex input data like MFCCs and learn to 

map them to their classes.



Methodology

• Challenges faced

o Hit a roadblock with improving accuracies of our models.

• Solutions tried

o Used extra Features like zero-crossing rate (dominant frequency), root mean 

square energy (loudness), pitch, and spectral centroid (tone).

o Augmentation techniques

▪ Adding noise to the audio

▪ Stretching the audio

▪ Time shifting the audio



Methodology

• Solutions tried

o LSTM

• Working solutions

o Used RandomOverSampler, and SMOTE to correct biases in the dataset.

o Used features clustering methods like DBScan to remove outliers from the dataset.



Support Vector Machine (SVM)

• Used GridSearchCV to find the best hyperparameters.

• Radial Basis Function Kernel with a C of 18.

• Performance Metrics

o Accuracy - 78.216%

o Balanced accuracy - 79.235%

o F1-score - 0.781



Neural Network (NN)

• Hyperparameters

o Input Layer

o Hidden Layer 1: 1024 neurons, activation: relu

o Dropout Layer: 0.5

o Hidden Layer 2: 512 neurons, activation: relu

o Dropout Layer: 0.4

o Hidden Layer 3: 256 neurons, activation: relu

o Dropout Layer: 0.2

o Output Layer: activation: softmax

o Optimizer: adam, loss: categorical crossentropy, metrics: accuracy and F1 score



Neural Network (NN)

• Performance Metrics

o Accuracy – 88.15%

o Balanced Accuracy – 90.21%

o F1-score – 0.88
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K-Nearest Neighbours (KNN)

• Without DBScan and outlier removal

• Performance Metrics

o Accuracy – 86.38%

o Balanced Accuracy – 88.50%

o F1-score – 0.86



K-Nearest Neighbours (KNN)

• With DBScan and outlier removal

• Hyperparameters for DBScan

o Epsilon = 2.6

o Min_samples = 2

• Hyperparameters for KNN

o Neighbours = 1

o Distance = Minkowski

• Performance Metrics

o Accuracy – 92.97%

o Balanced Accuracy – 92.03%

o F1-score – 0.92



K-Nearest Neighbours (KNN)



Deployment and Applications

• Adapting to changing accents

• Deployment in smart room/classrooms

• Applicable to Plaksha AI assistant



Thank You!!!
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